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Viscous flow through a grating or lattice of cylinders 
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Viscous flow perpendicular to a line (or ‘grating’) of evenly spaced identical 
cylinders is considered in the case when the spacing between the cylinders is 
much smaller than their cross-sectional dimensions. Lubrication theory is 
used to find the pressure drop across the grating and hence the force on each 
cylinder. A square array (or ‘lattice’) of closely packed cylinders is similarly 
treated. 

Let us consider the slow two-dimensional flow of a viscous fluid transverse to a 
grating or a lattice of identical cylinders (e.g. pipes or rods). This flow has been 
analysed for cylinders of special shape when the separation between any two of 
them is large compared to their diameter (Hasimoto 1959 and references therein). 
We wish to point out that in the opposite extreme of closely packed cylinders 
the flow can also be analysed, and rather simply. This is possible because then 
most of the flow resistance is concentrated in the narrow gaps between adjacent 
cylinders. The flow in these gaps can be determined in the manner customarily 
employed in the theory of lubrication. Therefore the flow resistance, the pressure 
gradient and the force on a rod can all be calculated. We have previously used 
similar considerations to find the effective electrical conductivity of a composite 
medium composed of a dense array of perfectly conducting spheres or cylinders 
in a medium of finite conductivity (Heller 1963; Buchal & Keller 1963). 

In figure 1 is shown the gap between two adjacent cylinders assumed to be 
symmetric about the x-axis. This axis is in the flow direction and is midway 
between the cylinders, the equations of which are y = $_ h(x). Assuming the flow 
to be locally parallel for each value of x, we see that the x-component of velocity 
is u(x) = (yz - h2) p, /2p.  Here I, is the pressure, assumed to depend upon x only, 

and ,u is the viscosity. The total volume flux is q = udy = - 2h3p,/3,u. Thus 
p ,  = - 3,uq/2h3(x) and 

ax 

If x1 and x2 are at  opposite ends of the gap, (1)  gives the pressure drop across the 
gap in terms of the flux q through it. When the two cylinders in figure 1 are 
part of a grating lying along the y-axis, (1) gives the pressure drop across the 
grating. The flux per unit length through the grating, which is also the average 
flow speed, is U = Nq where N is the number of gaps per unit length. The force 
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F on a cylinder is just the pressure drop divided by the number of cylinders 

When there is a lattice of cylinders consisting of M parallel gratings per unit 
length along the x-axis, the pressure drop per unit distance along the x-axis is 
M times the value given by ( 1 ) .  The force on a cylinder is still given by ( 2 ) .  

FIGURE 1. The gap between two neighbouring cylinders. The z-axis is parallel to the 
direction of flow and midway between the cylinders, which are symmetric about it. The 
equations of the cylinder are y = f h(z). 

To exemplify the above considerations, let us consider a grating of circular 
cylinders each of radius a with axes a distance 2c apart. Then 

h(x)  = c - (a2 -x2)p 

gnpqat 

8.24(c - a)%' 
p (  -a)  -p(a)  = 3,uq [c - (a2 - x ~ ) * ] - ~  dx: G and (3) 

In  ( 3 )  we have retained only the term which is most important when c - a  is 
small. Now N = 1/2c so ( 2 )  and ( 3 )  yield for the force on a cylinder, recalling 
that a NN c, 

If the cylinders are arranged in a square lattice then M = N = 1/2c and the 
average pressure gradient j3z along the x-axis is M times (3), which yields 

( 5 )  
977,uuc* 

8.24(c - a)# - j3, = 

Naturally ( 4 )  and ( 5 )  yield j3$ = M N F  = F/4c2 as must be the case. We see from 
(4) and ( 5 )  that for fixed values of p ,  U and a, both j3$ and F become infinite as 
c -a  tends to zero. It was to determine this singular behaviour that the present 
method was designed. 

For .a square lattice of circular cylinders with a/c  < 1 ,  Hasimoto (1959) has 
obtained the following result, given by his equation (6.5) 

(6) F A 4n,uU[log (2cla) - 1.3105]-1. 



96 Joseph B. Keller 

When a/c M 1, F is given instead by our equation (4). Thus (4) and (6) determine 
F(a,/c) near the two ends of the range 0 6 a/c < 1. For intermediate values of 
alc, F can be found by numerical solution of an appropriate boundary value 
problem for the stream function of the flow. 
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